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by comparison of its spectroscopic properties to those of the 
analogous complexes LFe(CO)**.5 The structure of the unex­
pected product, 3, was assigned by comparison of its spectro­
scopic properties with those of [(RS)(CO)3Fe]2.

6,7 Unbridged 
complexes such as [(02H5S)(CO)3Fe]2 (4) have stereo­
chemical^ nonrigid Fe(CO)3 groups.8 Compound 3 is also 
fluxional at room temperature, showing only one line9 in the 
carbonyl region of the 13C NMR spectrum. At -85 0C, two 
lines, approximately in the intensity ratio 2:1, are observed, 
consistent with the symmetrical structure expected for 3. 

The preparation of 3 was quite unexpected, involving the 
cleavage of two carbon-sulfur bonds. Little, if any, 3 is formed 
when Fe(CO)5 is used in the reaction, while a large excess of 
Fe2(CO)9 raises the yield. An atmosphere of CO prevents 
formation of 3 with 2 being the major product. This implies 
that an unsaturated dimeric carbonyl species is required. 
Possible precursors, such as dithiacyclopropane10 or meth-
anedithiol,1' are unlikely to be produced from 1 under the re­
action conditions. We propose that 3 may be produced via re­
ductive decyclization of an intermediate such as (XYS2)-
(CO)7Fe2 (Scheme I). Complexes of the type (L-L)Fe2(CO)7 
are known in iron carbonyl chemistry.'2 Such a complex con­
taining 1,3-dithiacyclohexane has been reported but not 
characterized.13 

Compounds 5 and 6 undergo decarbasulfurization to give 
7 in addition to products analogous to 2.14a In 8 there is the 
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possibility of cleaving either two carbon-sulfur bonds or two 
sulfur-sulfur bonds to give 9 or 10, respectively. Only 10 is 
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Reductive Decyclization of Organosulfur Compounds. 
Preparation and Crystal Structure of 
jt,M'-Dithiolato-methanehexacarbonyldiiron(I) 

Sir: 

Desulfurization with organometallic complexes is a topic 
of current interest and development.1 During a study on the 
coordination chemistry of cyclic organosulfur compounds, we 
have discovered a decarbasulfurization reaction. The parent 
molecules undergo novel cleavage reactions whereby organo­
sulfur fragments are incorporated in complexes of general 
formula (RS2)(CO^Fe2. We are prompted to communicate 
these unexpected results because of the importance of the two 
classes of molecules involved. In addition, organometallic 
complexes of novel structures have been prepared. 

l,3-Dithia-5-cycloheptene2 (1) has two potential ligating 
sites: the olefin and the sulfur atoms. Upon reaction with 
Fe2(CO)9 in tetrahydrofuran, at room temperature, a complex 
mixture resulted. Chromatography on alumina permitted 23 

and 34 to be isolated as oils which were crystallized from 
hexane. The structure of 2, an expected product, was assigned 

( ^ V F«2'c°'.—• (^, ) 
'"-Fe(CO)4 

S , ,CO, , 
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isolated,l4b which suggests that sulfur-sulfur bond cleavage 
is preferred. Scheme I is consistent with previously unrelated 
reactions such as the preparation15 of 11 from 12 and 13. In 
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addition, complex 14, which has aryl groups replacing the 
methylene hydrogens of 3, has been isolated from reactions of 
diaryl thioketones and Fe2(COV6 I t w a s proposed that these 
thioketones may rearrange in solution to give 15 which falls 
into the general category. Finally, the recently reported17 

synthesis of 16 from 17 indicates that this reaction may be 
applicable to other classes of cyclic sulfur compounds. 

PJl ^ S ^c 
Ph 
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The structure of 3, with its bridging methylene group, is 
particularly relevant to unbridged complexes of the general 
formula [(RS)(CO)3Fe]2.

18 Three different isomers can exist 
depending on the arrangement of the R groups. The presence 
of two of the three isomers can be detected in solution.6 For R 
= C2H5 (4)19 and CeH5

20 and for the structural analogue 
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Figure 1. ORTEP drawing of (CH2S2)(CO)6Fe2. 

Table I. Comparison of Selected Distances (A) and Angles 
(Degrees) for Complexes 3, 4, and 18" 

complex Fe-Fe Fe-S S-S Fe-S-Fe S-Fe-S 

3 2.485(1) 2.262(1) 2.673(2) 66.64(4) 72.45(4) 
4 2.537(10) 2.259(7) 2.932(14) 68.3(3) 81.0(3) 

18 2.552(2) 2.228(2) 2.007(5) 69.9(1) 53.5(1) 

" Data for complexes 4 and 18 taken from ref 19 and 29, respec­
tively. 

[ (C 6H 5S)(^-C 5H 5)Rh] 2 , 2 1 the axial-equatorial (ae) con­
formation is observed in the crystal. Unfavorable van der 
Waals contacts were calculated19 for the axial-axial (aa) 
isomer; thus the equatorial-equatorial (ee) structure was 
proposed for the other species in solution although some doubt 
still remains.8 Complex 3 is formally analogous to an axial-
axial isomer. 

.Fe(CO), 
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J^(CO)1 \ Fe 
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The structure of CH2S2Fe2(CO)6 (Figure 1) displays an 
interesting quadricyclic CH2S2Fe2 ring system similar to the 
normal "butterfly" structure19^21 except for the addition of 
a bridging methylene group that serves to pin back the sulfur 
atoms. While the gross structural features are similar to other 
members of this class,26 the presence of the bridging methylene 
group has some interesting consequences. The S-CH 2 -S 
bridging angle, for example, is only 94.55 (3)°. While not ex­
traordinary,27 it is indicative of the strain in the CH2S2Fe2 ring 
system.28 This strain is also reflected in the bond lengths and 
angles of 3 when compared with 4 and [S(CO)3Fe]2

29 (18), 
the latter containing a direct S-S bond (Table I). The sulfur 
atoms are much closer together in 3 than they are in 4. The 
Fe-Fe bond length of 2.485 (1) A is the shortest reported for 
these compounds.30 The short Fe-Fe distance is accompanied 
by relatively long Fe-S distances, as expected.31 The Fe-S-Fe 
angles are somewhat compressed while the S-Fe-S are inter­
mediate between those for 4 and 18. 
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A Stereocontrolled Synthesis of 
the (±) Djerassi-Prelog Lactonic Acid 

Sir: 

The lactonic acid1-2 1 is a key degradation product of the 
macrolide antibiotic methymycin. Its structure was established 
by Djerassi,3 while the stereochemical assignments were 
completed by Rickards.4 Significantly, 1 retains the structural 
fragment C-I through C-7 and four of the six chiral centers 
of the aglycone methynolide, and this fact has been exploited 
in the total synthesis of the latter by Masamune.5 

C H 3 ,CH3 

C H 3 „ , ^ ^ C 0 2 H 

RO-S< C 0 2 H 
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2a 

R = CH2OCH3 

R = H 

1 R 'CH2OCH3 
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We now report a stereocontrolled and efficient synthesis of 
rac-1. A strategy involving the construction of the cyclohep-
tanone 2 and its oxidative fragmentation to the diacid precursor 
3 was considered an ideal route to the lactone 1. m-4,6-Di-
methyl cyclohexane-1,3-dione (4) was used to provide the cis 
geometry of the 2,4-methyl groups in 2. A single stereoisomer 

5 - 8 R = -CHOC 2 H 5 

5 X = O 

6 X = ' 
' '0H 

> 0 H 
7 x = r 

'• H 

8 X= . 
''0CH2OCH3 

of 4 was obtained by the reaction of butanone with methyl 
methacrylate6 (NaOMe, benzene, 0 0C, 6 h), mp 110-113 0C, 
in 30% yield: mass spectrum m/e 140 (M+); IR (CHCl3) 5.8, 
5.9, 6.55 n\ NMR (CDCl3) 8 1.2 (6 H, d, J = 6 Hz, -CHCW3), 
3.45 (2 H, s, COCH2CO). The stereochemistry of 4 was es­
tablished by its periodate oxidation7 to afford the known 
w&w-2,4-dimethylglutaric acid.8 Reaction of 4 with ethyl vinyl 
ether (hydrochloric acid catalysis, room temperature, 12 h), 
gave the acetal 5, bp 98-100 0C (~0.2 mm), in 83% yield: IR 
(neat) 6.0, 6.27 n (Fermi resonance); NMR (CCl4) 5 5.2 (1 
H, m, -C=CH). 

The desired cis axial alcohol 6 was obtained from 5 by re­
duction with lithium Selectride9 (THF, 0 0C, 1.5 h), followed 
by oxidative workup, as a single isomer in 94% yield: IR (neat) 
3.0, 6.08 M (enol ether); NMR (CCl4) 8 4.85 (1 H, d, J = 8 Hz, 
-C=CH). The expected stereochemical assignment for 6 was 
supported by the reduction of 5 with lithium aluminum hydride 
(THF, 0 0C, 1.5 h) when an isomeric alcohol 7 was obtained: 
NMR (CCl4) 5 4.6 (1 H, s, -C=CH). The alcohol 6, when 
treated with chloromethyl methyl ether in the presence of ethyl 

diisopropylamine (0 0C, 12 h) afforded the acetal 8, bp 90-91 
CC (0.5 mm), in 85% yield: mass spectrum m/e 285 (M+); IR 
(neat) 6.08 n C=C-O); NMR (CDCl3) 8 3.38 (3 H. s, 
OCH3), 4.7 (2 H, AB, JAB = 4 Hz, -OCH.O), 4.95 (1 H, d. 
J = I Hz,-C=CH). 

The stage was now set for the addition of a methylene 
equivalent to 8, and the subsequent ring expansion to a cyclo-
heptenone. This was done by the addition of dichlorocarbene 
(CHCI3, 50% aqueous NaOH, benzyl triethylammonium 
chloride10). The reaction afforded the ^cw-dichlorocyclo-
propyl compound" 9 in 97% yield. Treatment of 9 with 

OR 

OCH2OCH3 

CH3 

j ) R' = 4- 0C,H 
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IO R' = H 

OCH2OCH3 OCH2OCH, 

2nS 12 

aqueous acetic acid (90%), containing sodium acetate, trans­
formed it smoothly, via 10, to the chloroenone 11 (82% yield, 
bp 107 0C (0.06 mm)) as a thick oil with a characteristic odor: 
mass spectrum: m/e 232 (M+); IR (neat) 5.92. 6.35 M; NMR 
(CDCl3) 5 0.95 (3 H.d,7 = 6 Hz. CH3 at C-5). 1.2(3 H,d. 
J = 6 Hz, CH3 at C-7) 3.2 (3 H, s, OCH3), 4.7 (2 H, s, 
OCH2O), 6.8 (1 H, d, J = 4 Hz, -C=CH). 

The last methyl group was introduced by the addition of 
lithium dimethylcuprate to 11 (ether, 0 0C, 1.5 h). The chlo-
roketone 12 was obtained as a mixture epimeric at C-2, bp 
103-105 0C (0.05 mm), in 97% yield: NMR (CDCl3) 5 5.28 
(1 H, 2 d, J = 3 Hz, H at C-2). Reductive dehalogenation of 
12 with chromous perchlorate12 (DMF, 0 0C, 6 h) afforded 
the cycloheptanone13 2 as a colorless oil. bp 78-80 0C (0.05 
mm), in 62% yield: mass spectrum m/e 214 (M+); IR (neat). 
5.85 M; 1H NMR (CDCl3) 8 0.9 (3 H. d, J = 8 Hz, CH3 at 
C-4), 1.1 (6 H,d, J = 8 Hz, CH, at C-2 and C-6), 3.4 (3 H, 
s, OCH3), 4.7 (2 H, AB, A B = 4 Hz, OCH.O); 13C NMR 
(CDCI3) 8 16.77 (CH3 at C-4), 19.33 (CH3 at C-6), 21.41 
(CH3 at C-2), 33.33 (C-3), 33.57 (C-6). 33.62 (C-4) 
(C-7), 55.68 (OCH3) 83.84 (C-5), 96.32 (-OCH.O) 
(C=O). 

Support for the assignment at C-5 and C-6 was derived from 
NMR studies on the ketal 13, obtained from 2 with dilute 
hydrochloric acid, followed by methanol and acid, via the al­
cohol 2a which is in equilibrium with the hemiketal 14. Ex­
amination of the molecular models of 13 reveals dihedral an­
gles of 0° between H-I and H-2 and 90° between H-2 and H-3. 
As expected, the NMR spectrum of 13 exhibits H-2 as a 
doublet at 8 4.35 (J = 1 Hz) coupled to H-I (irradiation of H-I 
collapses H-2 into a singlet, whereas irradiation of H-3 has no 
effect on the H-2 signal). The configurations of the methyl at 

.41 
5.8 

H3 H2 

IJJ R = CH3 

14 R = H 

OTMS 

OCH2OCH3 

15 

C-6 and methoxyl at C-5 in 13, and therefore of the methyl and 
alkoxy groups in2, clearly follow from the above NMR re­
sults.14 Conclusive evidence for these stereochemical assign­
ments was provided by transformation of 2 to the (±) Djer-
assi-Prelog lactone. The ketone 2 was converted by trapping 
the kinetic enolate (LDA, THF. 0 0C) with trimethylchlo-
rosilane15 to the silyl enol ether 15, bp 84 °C (0.05 mm), in 84% 
yield: mass spectrum m/e 286 (M+); IR (neat) 6.02 ju (C--= 
CHOTMS); NMR (CDCl3) 8 0.2 (9 H. s, SiCH3), 0.9 (3 H, 
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